The functions se_gomp, re_gomp, hce_gomp, and ae_gomp provide the Shannon entropy, Rényi entropy, Havrda and Charvat entropy, and Arimoto entropy, respectively, depending on the selected parametric values of the Gompertz distribution and \(\delta\).
Arguments
alpha
The strictly positive parameter of the Gompertz distribution (\(\alpha > 0\)).
beta
The strictly positive parameter of the Gompertz distribution (\(\beta > 0\)).
delta
The strictly positive parameter (\(\delta > 0\)) and (\(\delta \ne 1\)).
Author
Muhammad Imran, Christophe Chesneau and Farrukh Jamal
R implementation and documentation: Muhammad Imran <imranshakoor84@yahoo.com>, Christophe Chesneau <christophe.chesneau@unicaen.fr> and Farrukh Jamal farrukh.jamal@iub.edu.pk.
Details
The following is the probability density function of the Gompertz distribution:
$$
f(x)=\alpha e^{\beta x-\frac{\alpha}{\beta}\left(e^{\beta x}-1\right)},
$$
where \(x > 0\), \(\alpha > 0\) and \(\beta > 0\).
References
Soliman, A. A., Abd-Ellah, A. H., Abou-Elheggag, N. A., & Abd-Elmougod, G. A. (2012). Estimation of the parameters of life for Gompertz distribution using progressive first-failure censored data. Computational Statistics & Data Analysis, 56(8), 2471-2485.