Learn R Programming

shannon (version 0.2.0)

Gompertz distribution: Compute the Shannon, Rényi, Havrda and Charvat, and Arimoto entropies of the Gompertz distribution

Description

Compute the Shannon, Rényi, Havrda and Charvat, and Arimoto entropies of the Gompertz distribution.

Usage

se_gomp(alpha, beta)
re_gomp(alpha, beta, delta)
hce_gomp(alpha, beta, delta)
ae_gomp(alpha, beta, delta)

Value

The functions se_gomp, re_gomp, hce_gomp, and ae_gomp provide the Shannon entropy, Rényi entropy, Havrda and Charvat entropy, and Arimoto entropy, respectively, depending on the selected parametric values of the Gompertz distribution and \(\delta\).

Arguments

alpha

The strictly positive parameter of the Gompertz distribution (\(\alpha > 0\)).

beta

The strictly positive parameter of the Gompertz distribution (\(\beta > 0\)).

delta

The strictly positive parameter (\(\delta > 0\)) and (\(\delta \ne 1\)).

Author

Muhammad Imran, Christophe Chesneau and Farrukh Jamal

R implementation and documentation: Muhammad Imran <imranshakoor84@yahoo.com>, Christophe Chesneau <christophe.chesneau@unicaen.fr> and Farrukh Jamal farrukh.jamal@iub.edu.pk.

Details

The following is the probability density function of the Gompertz distribution: $$ f(x)=\alpha e^{\beta x-\frac{\alpha}{\beta}\left(e^{\beta x}-1\right)}, $$ where \(x > 0\), \(\alpha > 0\) and \(\beta > 0\).

References

Soliman, A. A., Abd-Ellah, A. H., Abou-Elheggag, N. A., & Abd-Elmougod, G. A. (2012). Estimation of the parameters of life for Gompertz distribution using progressive first-failure censored data. Computational Statistics & Data Analysis, 56(8), 2471-2485.

See Also

re_exp, re_gamma, re_ray

Examples

Run this code
se_gomp(2.4,0.2)
delta <- c(2, 3)
re_gomp(2.4,0.2, delta)
hce_gomp(2.4,0.2, delta)
ae_gomp(2.4,0.2, delta)

Run the code above in your browser using DataLab